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Abstract

In the dynamic analysis of the classical absorber composed of a spring, a damper and a lumped mass, the mass of its

helical spring (or spring mass) is usually neglected. The purpose of this paper is to present a modified absorber with inertia

effect of the spring mass considered. In order to evaluate the vibration–reduction efficiency of the presented modified

absorber, the forced vibration analyses of a single degree-of-freedom (dof) and a multiple dof structural systems are

performed. The first analysis is to determine the dynamic magnification factor of a single dof spring–mass system,

respectively, attached by a classical absorber and a modified absorber and subjected to a harmonic excitation. The second

analysis is to determine the maximum dynamic responses of a multiple dof pinned–pinned beam, respectively, attached by

the last two kinds of absorbers and subjected to a moving concentrated load. Because the second analysis is conducted

using the conventional finite element method (FEM), in additional to the mass matrix, damping matrix and stiffness matrix

of the classical and modified absorbers, the expressions for calculating the optimum parameters of the last two absorbers

associated with any order of vibration mode of the pinned–pinned beam are also derived based on the modal data obtained

from the mode superposition methodology and the orthogonal property between the normal mode shapes. Numerical

results reveal that the spring mass of the absorber has the effect of suppressing the maximum dynamic responses of the

main structural system and should be considered in the formulation to agree with the practical situation.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Because tuned mass damper is a widely used passive vibration absorber for suppressing the dynamic
responses of a structure due to external dynamic loads, many researchers have studied the relating problems.
For example, Ormondroyd and Hartog [1], Brock and Mo [2], Hartog [3] and Warburton [4] have derived the
optimum parameters of the absorber for suppressing the dynamic responses of the single degree-of-freedom
(dof) spring–mass main system. In these researches, the absorber was considered as a spring–damper–mass
system and directly attached to the main system. Ren [5] has developed an alternative method for the vibration
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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reduction of a single-dof main system due to external loads. In this research, the damper of the absorber was
connected to the ground (or the base structure) rather than the main mass system. It is well known that, any
real structure can be reasonably represented as a multiple dof system, but if the contributions of higher modes
to its dynamic responses are negligible, then the last multiple dof system can be replaced by an equivalent
single dof main system. In such a case, the optimum absorber parameters can be determined based on the
vibration–reduction efficiency of the equivalent single dof main system due to external loads. Based on the last
concept, Yau and Yang [6], Joshi and Jangid [7], Rana and Soong [8], Rice [9] and Kwon et al. [10] have used
the above-mentioned optimum absorber parameters for the equivalent single dof main system [1–4] to
suppress the dynamic responses of the multiple dof structures subjected to earthquake loadings and moving
loads. From the review of the preceding literature, it is found that the helical spring of the absorber is assumed
to be massless so that the mass of its helical spring (or spring mass) is neglected in the analysis. To improve this
drawback, the inertia effect of the spring mass of the absorber is considered in this paper.

First of all, by considering the spring mass of the absorber, the equations of motion of a single-dof
spring–mass main system and the attached spring–damper–mass absorber, are derived using the
Lagrange’s equations. Then, the optimum parameters for vibration reduction of the single-dof main
system due to an external harmonic load are determined. Next, based on the modal data obtained from the
mode superposition methodology and the orthogonal property between the normal mode shapes of the
multiple dof pinned–pinned beam, the technique for determining the optimum absorber parameters associated
with any order of vibration mode of the beam are presented. Finally, the last optimum absorber parameters
are used for suppressing the dynamic responses of a pinned–pinned beam subjected to a moving load.
Numerical results show that the inertia effect of the spring mass of the absorber does affect the
vibration–reduction efficiency of the absorber to some degree. Because the helical spring of the absorber is not
massless in practice, the optimum parameters of the modified absorber with inertia effect of the spring mass
considered should be more reasonable than the ones of the classical absorber with inertia effect of the spring
mass neglected.

For convenience, in this paper, an absorber is called the modified absorber if its spring mass is considered
and is called the classical absorber if its helical spring is assumed to be massless. Besides, a beam is called the
loaded beam if it carries any number of absorbers and is called the bare beam if it carries nothing.
2. Equations of motion for the main system and the attached modified absorber

Fig. 1 shows a spring–damper–mass absorber attached to a single dof spring–mass main system. In which,
m1 and k1 are the mass and spring constant of the main system, respectively, m2, c2 and k2 are the mass,
damping coefficient and spring constant of the absorber, respectively, m̄s and ‘s are mass per unit length and
total length for the helical spring of the absorber, respectively, x1, _x1 and €x1 are the displacement, velocity and
acceleration of the main system, respectively, while x2, _x2 and €x2 are the corresponding ones of the absorber.
Because the object of this paper is to determine the optimum parameters of the absorber, only the inertia effect
of the spring mass of the absorber is considered in this section.
m1

m2

k1

k2, ms

c2

x1, x1, x1, F1

x2, x2, x2�s

Fig. 1. A spring–damper–mass absorber (k2, c2 and m2) attached to a single degree-of-freedom spring–mass main system (k1 and m1).
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The kinetic energy T and potential energy V of the entire vibrating system, as shown in Fig. 1, are given by

T ¼
1

2
m1 _x

2
1 þ

1

2
m2 _x

2
2 þ

1

2

Z ‘s

0

m̄s _x1 þ
x

‘s

ð _x2 � _x1Þ

� �2
dx, (1)

V ¼ 1
2

k1x
2
1 þ

1
2

k2ðx2 � x1Þ
2. (2)

Note that the displacement of the infinitesimal spring element dx for the helical spring of the absorber is
assumed to linearly vary from x1 to x2 in the vertical direction. Besides, the total length of the helical spring of
the absorber, ‘s, refers to that with respect to the static equilibrium position. In the conventional finite element
method (FEM), the property matrices of a spring element are similar to those of a longitudinally (or axially)
vibrating pin-jointed bar element [13]. Thus, the above-mentioned assumption for Eq. (1) is the same as that
for the pin-jointed bar element in FEM [13].

Substituting Eqs. (1) and (2) into the following Lagrange’s equations [11]:

q
qt

qT

q _x1

� �
�

qT

qx1
þ

qV

qx1
¼ c2ð _x2 � _x1Þ þ F1, (3a)

q
qt

qT

q _x2

� �
�

qT

qx2
þ

qV

qx2
¼ c2ð _x1 � _x2Þ (3b)

one obtains

m1 €x1 þ
ms

6
ð2 €x1 þ €x2Þ þ c2ð _x1 � _x2Þ þ k1x1 þ k2ðx1 � x2Þ ¼ F1, (4a)

m2 €x2 þ
ms

6
ð €x1 þ 2 €x2Þ þ c2ð _x2 � _x1Þ þ k2ðx2 � x1Þ ¼ 0, (4b)

where F1 is the external force applied on the main system and ms represents the total mass of the spring, i.e.,

ms ¼ m̄s‘s. (5)

Eqs. (4a) and (4b) are the equations of motion for the main system and the attached (spring–damper–mass)
absorber.

Setting m1 ¼ k1 ¼ 0 in Eqs. (4a) and (4b), and writing the resulting equations in matrix form, one has

½m�f €xg þ ½c�f _xg þ ½k�fxg ¼ ff g, (6)

where

f €xg ¼ ½ €x1 €x2 �
T, (7a)

f _xg ¼ ½ _x1 _x2 �
T, (7b)

fxg ¼ ½ x1 x2 �
T, (7c)

ff g ¼ ½F1 0 �T, (7d)

½m� ¼

ms

3
ms

6
ms

6
m2 þ

ms

3

" #
, (7e)

½c� ¼
c2 �c2

�c2 c2

" #
, (7f)

½k� ¼
k2 �k2

�k2 k2

" #
. (7g)
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In the last formulations, Eq. (6) is the equation of motion of the modified absorber, while [m], [c] and [k] are,
respectively, the mass, damping and stiffness matrices of the modified absorber with inertia effect of its spring
mass considered. Note that setting m1 ¼ k1 ¼ 0 is only for the convenience of derivation of the mass matrix of
the modified absorber, [m]. From the element mass matrix of the absorber, [m], given by Eq. (7e) one sees that
one third of the spring mass of the absorber, 1

3
ms, will affect the lumped mass of the absorber, m2, and the

other 1
3
ms will affect the mass of the spring–mass main system, m1. Besides,

1
6
ms has also the effect of coupling

the spring–mass main system and the modified absorber. Because the spring mass of the modified absorber,
ms ¼ m̄s‘s, is the distributed mass and the lumped mass of the absorber, m2, is the concentrated mass, it is
evident that the effect of using a slightly higher value of m2 itself is different from separately defining ms.

From Eqs. (7e)–(7g) one sees that the property matrices of the absorber element can also be derived from
the coupled equations defined by Eqs. (1) and (2). Thus, the current section provides an alternative approach
for deriving the property matrices of an absorber element in addition to the conventional approach used in the
FEM [13].

3. Dynamic magnification factor and optimum parameters for the modified absorber

In this section, the mathematical expression for the dynamic magnification factor of the lumped mass m1 of
the main system, jx̄1=xstj, is derived first. Then, the optimum frequency ratio fopt and the optimum damping
ratio xopt are determined, in turn, from the last expression.

3.1. Dynamic magnification factor for the lumped mass m1 of the main system

If the lumped mass m1 of the main system is subjected to a harmonic force

F1ðtÞ ¼ F̄1e
jot, (8a)

then the steady-state responses of the main system and the absorber, x1(t) and x2(t), take the form

x1ðtÞ ¼ x̄1e
jot, (8b)

x2ðtÞ ¼ x̄2e
jot. (8c)

In Eq. (8), F̄1 and o represent the amplitude and forcing frequency of the external force F1(t), respectively,
while x̄1 and x̄2 represent the amplitudes of x1(t) and x2(t), respectively.

Introducing Eqs. (8b) and (8c) into Eqs. (4a) and (4b), one has

ð�m�1o
2 þ k1 þ k2 þ joc2Þx̄1 �

ms

6
o2 þ joc2 þ k2

� �
x̄2 ¼ F̄1, (9)

� k2 þ
ms

6
o2 þ joc2

� �
x̄1 þ ðjoc2 þ k2 �m�2o

2Þx̄2 ¼ 0, (10)

where

m�1 ¼ m1 þ
ms

3
, (11)

m�2 ¼ m2 þ
ms

3
(12)

are the effective lumped masses of the main system and the modified absorber, respectively. Because the goal of
this research is to minimize the responses of the main system, only the response amplitude x̄1 is interested
herein. Solving Eqs. (9) and (10) for x̄1, one obtains

x̄1 ¼
K2 þ joc2

½K1K2 � ðm
�
2 þ

1
3
msÞk2o2 � 1

36
m2

so4� þ joc2½k1 � ðm
�
2 þ

1
3
msÞo2 �m�1o

2�
F̄1, (13a)

where

K1 ¼ k1 �m�1o
2, (13b)
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K2 ¼ k2 �m�2o
2. (13c)

If the ratio of the spring mass, ms, to the lumped mass of the absorber, m2, is denoted by b, i.e.,

b ¼
ms

m2
(14)

then, the substitution of Eq. (14) into Eq. (12) yields

ms ¼
3b

3þ b

� �
m�2. (15)

Introducing Eq. (15) into Eq. (13a) leads to

x̄1 ¼
K2 þ joc2

C̄ þ jD̄
F̄1, (16a)

where

C̄ ¼ K1K2 � 1þ
b

3þ b

� �
m�2k2o2 �

b2

4ð3þ bÞ2
m�

2

2 o4, (16b)

D̄ ¼ oc2 k1 � 1þ
b

3þ b

� �
m�2o

2 �m�1o
2

� �
. (16c)

From Eq. (16), one sees that x̄1 is a complex number and its magnitude is given by

x̄1j j ¼ F̄ 1
ðC̄K2 þ D̄oc2Þ

2
þ ðC̄oc2 � D̄K2Þ

2

ðC̄
2
þ D̄

2
Þ
2

" #1=2
¼ F̄ 1

K2
2 þ ðoc2Þ

2

C̄
2
þ D̄

2

� �1=2
. (17)

Therefore, the dynamic magnification factor for the main system is

x̄1

xst

����
���� ¼ K2

2 þ ðoc2Þ
2

ðC̄
2
þ D̄

2
Þ

.
k2
1

2
4

3
5
1=2

, (18a)

where

xst ¼ F̄1=k1 (18b)

is the displacement of lumped mass m1 with respect to its static equilibrium position due to the external force
amplitude F̄ 1.

Multiplying the numerator and denominator inside the square root of Eq. (18a) with ðm�1
�

m�2k1Þ
2,

respectively, one obtains

x̄1

xst

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

C2 þD2

s
¼

ffiffiffiffiffi
P

Q

s
, (19)

where

A ¼ f 2
� O2, (20)

B ¼ 2xfO, (21)

C ¼ ð1� O2Þðf 2
� O2Þ � 1þ

b
3þ b

� �
mf 2O2 �

b2

4ð3þ bÞ2
mO4, (22)

D ¼ ð2xfOÞ 1� 1þ
b

3þ b

� �
mO2 � O2

� �
(23)
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and

P ¼ A2 þ B2 ¼ ðf 2
� O2Þ

2
þ ð2xfOÞ2, (24)

Q ¼ C2 þD2 ¼ ð1� O2Þðf 2
� O2Þ � 1þ

b
3þ b

� �
mf 2O2 �

b2

4ð3þ bÞ2
mO4

� �2

þ ð2xfOÞ2 1� 1þ
b

3þ b

� �
mO2 � O2

� �2
. ð25Þ

In the last equations, x is the damping ratio, f and O are the frequency ratios and m is the lumped mass ratio,
they are, respectively, defined by

x ¼
c2

2
ffiffiffiffiffiffiffiffiffiffiffi
m�2k2

p , (26)

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

�
m�2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

�
m�1

q , (27)

O ¼
offiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1

�
m�1

q (28)

m ¼
m�2
m�1

. (29)

3.2. Optimum frequency ratio fopt

Eq. (19) represents dynamic magnification factor of the main system. For the case of m ¼ 1=20, b ¼ 0:1,
f ¼ 1:0 and x ¼ 0:0; 0:1; 0:3 and N, respectively, the curves for the dynamic magnification factor ðjx̄1=xstjÞ

versus the frequency ratio O ¼ o=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

�
m�1

q� �
are shown in Fig. 2. From the figure, one sees that all the curves

pass through points R and S. In other words, at points R and S, the dynamic magnification factor is
independent of damping ratio x. For this reason, one has

x̄1

xst

����
����
x¼0
¼

x̄1

xst

����
����
x¼1

. (30)

From Eq. (13a), one finds that the responses at x ¼ 0 (i.e., c2 ¼ 0) and x ¼ 1 (i.e., c2 ¼ 1) are in opposite
phase. Therefore, referring to Eqs. (13a)–(13c) and (19), one has

f 2
� O2

ð1� O2Þðf 2
� O2Þ � 1þ b

3þb

� �
mf 2O2 �

b2

4ð3þbÞ2
mO4
¼

�1

1� 1þ b
3þb

� �
mO2 � O2

(31)

or

2þ
4ð3þ 2bÞð3þ bÞ � b2

4ð3þ bÞ2
m

� �
O4 � 2 1þ

b
3þ b

� �
mf 2
þ f 2
þ 1

� �
O2 þ 2f 2

¼ 0. (32)

Noted that jx̄1=xstj � A=C if x ¼ 0 (or c2 ¼ 0) and x̄1=xst

�� �� � �B=D if x ¼ 1 (or c2 ¼ 1) as one may see

from Eqs. (13), (16) and (19)–(23).
If the roots of the last equation are denoted by OR and Os, then from Eq. (32) one has

O2
R þ O2

S ¼
2 ð1þ b=ð3þ bÞÞmf 2

þ f 2
þ 1


 �
2þ 4ð3þ2bÞð3þbÞ�b2

4ð3þbÞ2
m

. (33)
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According to Ref. [3], the optimum parameters of the absorber can be achieved by adjusting the responses
at points R and S to be equal and making R and S being the maximum points on the response curves. Based
on this concept and Eqs. (30) and (31), one obtains

1

ð1þ b=ð3þ bÞÞmO2
R � O2

R

¼
�1

ð1þ b=ð3þ bÞÞmO2
S � O2

S

(34)

or

O2
R þ O2

S ¼
2ð3þ bÞ

ð3þ bÞ þ ð3þ 2bÞm
. (35)

From Eqs. (33) and (35), one obtains the optimum frequency ratio for the modified absorber

f opt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð3þ bÞ2 � b2m

4½ð3þ bÞ þ ð3þ 2bÞm�2

s
. (36)

3.3. Optimum damping ratio xopt

Substituting Eq. (36) into Eq. (32) and solving the resulting expression for OR and Os will yield the
frequency ratios corresponding to points R and S:

OR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ bÞ

7mb2 þ 36mb� 6mbE3 � 9mE3 þ 36mþ 8b2 þ 48b� 3bE3 � 9E3 þ 72

E1E2

s
, (37)
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OS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ bÞ

7mb2 þ 36mbþ 6mbE3 þ 9mE3 þ 36mþ 8b2 þ 48bþ 3bE3 þ 9E3 þ 72

E1E2

s
, (38)

where

E1 ¼ 72þ 48bþ 8b2 þ 36mþ 36mbþ 7mb2, (39)

E2 ¼ 3þ bþ 3mþ 2mb, (40)

E3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mE1ðbþ 2Þ2

�
E2

2

q
. (41)

If R and S are the maximum points on the response curve, then the slope for the tangent, at points R and S,
of the last curve must be equal to zero, i.e.,

q

qO2

x̄1

xst

� �2
¼ 0. (42)

The substitution of Eq. (19) into Eq. (42) yields

P0Q� PQ0 ¼ 0, (43)

where

P0 ¼
qP

qO2
¼ �2ðf 2

� O2Þ þ 4x2f 2, (44)

Q0 ¼
qQ

qO2
¼ 2½ð1� O2Þðf 2

� O2Þ � 1þ
b

3þ b

� �
mf 2O2 �

b2

4ð3þ bÞ2
mO4��

½�f 2
þ 2O2 � 1� 1þ

b
3þ b

� �
mf 2
�

b2

2ð3þ bÞ2
mO2�

þ 4x2f 2 1� 1þ
b

3þ b

� �
mO2 � O2

� �2

þ 8x2f 2O2 1� 1þ
b

3þ b

� �
mO2 � O2

� �
� 1þ

b
3þ b

� �
m� 1

� �
. ð45Þ

From Eqs. (19), (24), (25), (30) and (31), one sees that

P

Q
¼

1

½1� ð1þ b=ð3þ bÞÞmO2 � O2�2
. (46)

Introducing Eq. (46) into Eq. (43) leads to

P0½1� 1þ
b

3þ b

� �
mO2 � O2�2 �Q0 ¼ 0. (47)

Substituting Eqs. (44) and (45) into Eq. (47) and solving the resulting expression for x2, one has

x2 ¼
Jx

4f 2O2½1� ð1þ b=ð3þ bÞÞmO2 � O2�½�ð1þ b=ð3þ bÞÞm� 1�
, (48a)
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where

Jx ¼ � ðf
2
� O2Þ 1� 1þ

b
3þ b

� �
mO2 � O2

� �2

� ð1� O2Þðf 2
� O2Þ � 1þ

b
3þ b

� �
mf 2O2 �

b2

4ð3þ bÞ2
mO4

� �

� �f 2
þ 2O2 � 1� 1þ

b
3þ b

� �
mf 2
�

b2

2ð3þ bÞ2
mO2

� �
. ð48bÞ

Substituting Eqs. (36) and (37) into Eq. (48), one obtains the optimum damping ratio at point R to be

x2 ¼ x2R. (49)

Similarly, one may obtain the optimum damping ratio at point S, by introducing Eqs. (36) and (38) into
Eq. (48), to be

x2 ¼ x2S. (50)

For convenience, we take the average of x2R and x2S as the optimum damping ratio of the modified
absorber, i.e.,

xopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2R þ x2S

2

s
. (51)

From the existing literatures [1–5], it has been found that the approximate damping ratio xopt ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2R þ x2SÞ

�
2

q
given by Eq. (51) is acceptable for the design of optimum parameters of vibration absorber. For

this reason, Eq. (51) is used as the optimum damping ratio in this paper.
From the foregoing equations one sees that, if the values of m and b are given, then one may determine

the values of fopt, OR and Os from Eqs. (36)–(38). The substitution of the last values of m, b, fopt, OR and Os

into Eq. (48) will determine the values of xR
2 and xS

2. Finally, the optimum damping ratio xopt is obtained
from Eq. (51).

4. Dynamic magnification factor and optimum parameters for the classical absorber

The optimum parameters presented in the last section are for the modified absorber (with inertia effect of its
spring mass considered). To validate the presented theory, the optimum parameters for the classical absorber
(with inertia effect of its spring mass neglected) are given in this section. For the main system attached by a
classical absorber as shown in Fig. 1, its dynamic magnification factor is given by [3]

x̄1

xst

����
���� ¼

ffiffiffiffi
P̄

Q̄

s
, (52)

where

P̄ ¼ ðf̄
2
� Ō2
Þ
2
þ ð2x̄f̄ ŌÞ2, (53)

Q̄ ¼ ½ð1� Ō
2
Þðf̄

2
� Ō

2
Þ � m̄f̄

2
Ō

2
�2 þ ð2x̄f̄ ŌÞ2½1� m̄Ō

2
� Ō

2
�2 (54)

with

x̄ ¼
c2

2
ffiffiffiffiffiffiffiffiffiffiffi
m2k2

p , (55)

f̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p , (56)
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Ō ¼
offiffiffiffiffiffiffiffiffiffiffiffiffi

k1=m1

p , (57)

m̄ ¼
m2

m1
. (58)

The optimum frequency and damping ratio of the classical absorber are [3]

f̄ opt ¼
1

1þ m̄
, (59)

x̄opt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m̄

8ð1þ m̄Þ

s
. (60)

It is noted that the lumped mass ratio m̄ defined in this section and that m defined in the last subsection are
different. If the value of m is given, then that of m̄ is determined by

m̄ ¼
m2

m1
¼

3m
3þ b� mb

. (61)

The last equation is obtained by substituting Eqs. (11), (12) and (14) into Eq. (29).
If the spring mass of the absorber, ms, is neglected, then from Eqs. (14), (58) and (61), one obtains

b ¼ ms=m2 ¼ 0, (62a)

m ¼ m̄ ¼ m2=m1. (62b)

Use of the last two relationships and Eqs. (36), (48)–(51), (59) and (60), one obtains

f opt ¼ f̄ opt ¼
1

1þ m̄
, (63a)

xopt ¼ x̄opt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m̄

8ð1þ m̄Þ

s
. (63b)

It is believed that Eqs. (62b), (63a) and (63b) may be one of the good evidences for the reliability of the
presented theory regarding the modified absorber.

5. Optimum parameters for the classical and modified absorbers attached to a beam

The optimum (non-dimensional) parameters for the absorber determined in the last two sections are for the
case of the absorber to be attached to the single dof spring–mass main system (see Fig. 1). If the absorber
is attached to a multiple dof pinned–pinned beam as shown in Fig. 5, the optimum (non-dimensional)
parameters for the absorber may be determined by the technique presented in this section. Based on the last
optimum (non-dimensional) parameters for the absorber, the corresponding optimum dimensional parameters
(i.e., spring constant k2 and damping coefficient c2) of the absorber can be obtained.

5.1. Optimum non-dimensional parameters for the absorber attached to a beam

The equation of motion of the bare pinned–pinned beam (without carrying absorber) takes the form

½M�n0�n0 f €qðtÞgn0�1 þ ½K �n0�n0 fqðtÞgn0�1 ¼ fF ðtÞgn0�1, (64)

where [M] and [K] are, respectively, the effective overall mass and stiffness matrices, f €qðtÞg, f _qðtÞg and fqðtÞg are,
respectively, the acceleration, velocity and displacement vectors, {F(t)} is the external force vector and n0 is the
effective total degree of freedom of the pinned–pinned beam.

Based on the theory of mode superposition method and the orthogonal property of the normal mode shapes
of the pinned–pinned beam, the n0 coupled simultaneous differential equations given by Eq. (64) may be
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reduced to the following uncoupled ones [12]:

~mr €Zr þ
~krZr ¼

~f rðr ¼ 1� n0Þ, (65)

where

~mr ¼ ffrg
T½M�ffrg, (66a)

~kr ¼ ffrg
T½K �ffrg, (66b)

~f r ¼ ffrg
TfF ðtÞg. (66c)

In the last three equations, ~mr, ~kr and ~f r are, respectively, the generalized mass, generalized stiffness and
generalized force for the equivalent single dof spring–mass system associated with the rth vibration mode of the
pinned–pinned beam, €Zr and Zr are, respectively, the rth generalized acceleration and displacement, while {fr}
is the rth normal mode shape.

For a pinned–pinned beam subjected to a moving load as shown in Fig. 5, the contribution to the dynamic
responses of the beam from its first mode (i.e., r ¼ 1) is the most significant. Therefore, one may design an
optimum absorber according to the generalized mass and generalized stiffness of the equivalent single dof
spring–mass system associated with the 1st vibration mode of the pinned–pinned beam, ~m1 and ~k1. It is evident
that the values of ~m1 and ~k1 may be obtained from Eqs. (66a) and (66b) with r ¼ 1. If the lumped mass m2 and
the spring mass ms of the absorber are given, then the associate optimum non-dimensional parameters for the
modified (or classical) absorber may be obtained from Eqs. (14), (29), (36) and (51) (or Eqs. (58)–(61)).
5.2. Optimum dimensional parameters for the absorber attached to a beam

If the lumped mass m2 and the ratio of spring mass ms to lumped mass m2 of the modified absorber,
b ¼ ms=m2, are given, then the lumped mass ratio for the effective lumped mass of the modified absorber, m�2,
to the effective generalized mass associated with the 1st vibration mode of the beam, m�1, is determined by
(cf. Eq. (29))

m ¼
m�2
m�1
¼

m2 þ ðms=3Þ

~m1 þ ðms=3Þ
¼

3m2 þ bm2

3 ~m1 þ bm2
. (67)

Substituting the values of b and m into Eqs. (36) and (48)–(51) will determine the values of optimum
frequency ratio fopt and optimum damping ratio xopt. Thus, based on Eqs. (27) and (26), the corresponding
optimum spring constant and optimum damping coefficient of the modified absorber are, respectively,
given by

k2 ¼ m�2
k1

m�1

� �
f 2
opt ¼ ðm2 þ

1
3
bm2Þ

~k1

~m1 þ
1
3
bm2

" #
f 2
opt , (68a)

c2 ¼ 2xopt
ffiffiffiffiffiffiffiffiffiffiffi
m�2k2

p
¼ 2xopt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ

1
3
bm2Þk2

q
. (68b)

Eqs. (68a) and (68b) are for determining the spring constant and damping coefficient of the modified

absorber associated with 1st vibration mode of the beam. For the case of classical absorber, Eqs. (68a) and
(68b) must be replaced by

k2 ¼ m2
k1

m1

� �
f̄
2

opt ¼ m2

~k1

~m1

 !
f̄
2

opt , (69a)

c2 ¼ 2x̄opt
ffiffiffiffiffiffiffiffiffiffiffi
m2k2

p
, (69b)

where f̄ opt and x̄opt can be obtained from Eqs. (58) to (60).
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6. Dynamic responses of a beam due to a moving load

In this section, the theories for the determinations of dynamic responses of a uniform beam, without and
with absorber, subjected to a moving concentrated load are presented.

6.1. Dynamic responses of a beam without absorber and subjected to a moving load

The equation of motion for a multiple dof beam without absorber (cf. Fig. 3) is given by

½M̄�f €̄qðtÞg þ ½C̄�f _̄qðtÞg þ ½K̄ �fq̄ðtÞg ¼ fF̄ ðtÞg, (70)

where ½M̄�, ½C̄� and ½K̄� are, respectively, the overall mass, damping and stiffness matrices, f €̄qðtÞg, f _̄qðtÞg and
{q(t)} are, respectively, the acceleration, velocity and displacement vectors of the entire unconstrained beam
and fF̄ ðtÞg is the associated overall external force vector.

In this paper, the overall stiffness and mass matrices, ½K̄ � and ½M̄�, of the entire beam are determined by
assembling the elementary property matrices for each of the beam elements [12]. Since the beam studied is
assumed to be undamped, its overall damping matrix is a zero matrix, i.e., ½C̄� ¼ ½0�.

When the beam is subjected to a concentrated force Pc, all the nodal forces of the beam are equal to zero
except those for the sth beam element on which the concentrated force Pc applies (see Fig. 4) [13,14]. Thus, the
overall external force vector fF̄ ðtÞg in Eq. (70) takes the form

fF̄ ðtÞg ¼ ½000 � � � f
ðsÞ
1 ðtÞf

ðsÞ
2 ðtÞf

ðsÞ
3 ðtÞf

ðsÞ
4 ðtÞ � � � 000�

T, (71)

where f
ðsÞ
i ðtÞ (i ¼ 124) are the equivalent nodal forces of the sth beam element on which the moving load Pc

applies and are given by [14]

ff ðsÞðtÞg ¼ ½ f
ðsÞ
1 ðtÞ f

ðsÞ
2 ðtÞ f

ðsÞ
3 ðtÞ f

ðsÞ
4 ðtÞ �

T ¼ PcfNg (72)

with

fNg ¼ ½N1 N2 N3 N4 �
T. (73)
V

x

t = 0

Pc

xp (t)

y

L

2 3 41 5 6 7 8 9 10 11 12 13

Fig. 3. A pinned–pinned beam subjected to a concentrated force Pc moving from the left-end to the right-end of the beam with a constant

speed V.

x

f1
(s)

f2
(s)

element s

f4
(s)

f3
(s)Pc

�b

Fig. 4. Equivalent nodal forces f
ðsÞ
i (i ¼ 124) of the sth beam element due to a concentrated force Pc.
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The symbols Ni (i ¼ 124) appearing in Eq. (73) are the shape functions of the beam element given by [14]

N1 ¼ 1� 3B2 þ 2B3, (74a)

N2 ¼ ðB� 2B2 þ B3Þ‘b, (74b)

N3 ¼ 3B2 � 2B3, (74c)

N4 ¼ ð�B2 þ B3Þ‘b (74d)

with

B ¼ x=‘b, (74e)

where ‘b and x, respectively, represent the length of the beam element and the distance between the position of
the concentrated force Pc and the left-end of the beam element (see Fig. 4).

It is noted that, in Eq. (71), the equivalent nodal forces, f
ðsÞ
i ðtÞ (i ¼ 124) are, respectively, the s1th, s2th, s3th

and s4th coefficients of the overall external force vector {F(t)}, where s1, s2, s3 and s4 are, respectively, the
numberings for the four degrees of freedom of the sth beam element on which the moving load Pc applies.

If the concentrated force Pc moves, with a constant velocity V, from the left-end to the right-end of the beam
(see Fig. 3), the position of the concentrated force Pc at any instant of time t is given by

x̄pðtÞ ¼ Vt. (75)

Thus, the numbering for the beam element on which the concentrated force Pc applies at time t is
determined by

s ¼ Integer part of
x̄pðtÞ

‘b

� �
þ 1. (76)

Now, one may use Eqs. (71)–(76) to calculate the instantaneous overall external force vector {F(t)},
appearing in Eq. (70), at any instant of time t. It is noted that the local x coordinate of the moving
concentrated force Pc, as shown in Eq. (74e), is a function of the global coordinate x̄pðtÞ, i.e.,

B ¼
x

‘b

¼
x̄pðtÞ � ðs� 1Þ‘b

‘b

. (77)

Finally, one may calculate the dynamic responses of the bare beam (i.e., the beam without any attachment,
such as the absorber) due to a moving force.

6.2. Dynamic responses of a beam with an absorber and subjected to a moving load

The formulations of the last section are for calculating the dynamic responses of the pinned–pinned beam
without absorber (see Fig. 3) due to a moving load. For the forced vibration responses of the same beam with

an absorber as shown in Fig. 5, the overall mass matrix ½M̂�, damping matrix ½Ĉ� and stiffness matrix ½K̂ � of the
entire vibrating system (i.e., the beam with an absorber) must be determined as follows:

½M̂�ðnþ1Þ�ðnþ1Þ ¼ ½M̄�n�n þ ½m�2�2, (78a)

½Ĉ�ðnþ1Þ�ðnþ1Þ ¼ ½C̄�n�n þ ½c�2�2, (78b)

½K̂�ðnþ1Þ�ðnþ1Þ ¼ ½K̄ �n�n þ ½k�2�2, (78c)

where ½M̄�, ½C̄� and ½K̄ � are, respectively, the overall mass, damping and stiffness matrices of the unconstrained

beam itself with total dof n, and [m], [c] and [k] are the mass, damping and stiffness matrices of the absorber. If
the inertia effect of the spring mass of the absorber is considered, then the last element property matrices are
given by Eqs. (7e), (7f) and (7g), respectively. If the inertia effect of the spring mass of the absorber is
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Fig. 5. A pinned–pinned beam with a central absorber and subjected to a concentrated force Pc moving from the left-end to the right-end

of the beam with a constant speed V.
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neglected, then the element property matrices of the absorber are exactly the same as those defined by
Eqs. (7e)–(7g) except that the mass matrix must be replaced by [13,14]

½m� ¼
0 0

0 m2

" #
. (79)

It is noted that, in Eqs. (78), the addition of [m], [c] and [k] to ½M̄�, ½C̄� and ½K̄� must be conducted according
to the numberings for the dof of the absorber. The overall property matrices, ½M̂�, ½Ĉ� and ½K̂�, obtained from
Eq. (78) are for the unconstrained beam. The effective overall property matrices of the pinned–pinned beam,
[M], [C] and [K], are obtained from the overall matrices ½M̂�, ½Ĉ� and ½K̂� by imposing the prescribed boundary
conditions. It is evident that the order of the effective overall property matrices for the loaded beam (carrying
nab absorbers) is greater than that of the bare beam by nab, where nab denotes the total number of absorbers
carried by the beam.
7. Numerical results and discussions

In this section, numerical example is illustrated to validate the presented theory and the developed computer
program first. Then, the vibration–reduction efficiency of an absorber on a uniform pinned–pinned beam
subjected to a moving concentrated load is studied.

7.1. Validation

The example illustrated in this subsection is the single dof spring–mass main system carrying an
(spring–damper–mass) absorber, as shown in Fig. 1. The curve for the dynamic magnification factor of the

lumped mass m1 of the main system, x̄1=xst

�� ��, versus frequency ratio, O ¼ o
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1

�
m�1

q
, is obtained from

Eq. (19) based on spring mass ratio b ¼ 0:0 and lumped mass ratio m ¼ 0:05 together with the optimum
parameters for the modified absorber (f ¼ 0:9524, x ¼ 0:1336), and then it is compared with the one obtained
from Eq. (52) by using the lumped mass ratio m̄ ¼ 0:05 together with the optimum parameters for the classical

absorber (f̄ ¼ 0:9524, x̄ ¼ 0:1336). The result is shown in Fig. 6, in which, the solid curve with circles (—J—)
is for the modified absorber and the solid curve with crosses (—�—) is for the classical absorber. Good
agreement between the last two curves confirms the reliability of the presented theory.

It is noted that the last two sets of optimum parameters, i.e., (f ¼ 0:9524, x ¼ 0:1336) for the modified
absorber and (f̄ ¼ 0:9524, x̄ ¼ 0:1336) for the classical absorber, are obtained from Eqs. (36) and (51) and
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Fig. 6. Dynamic magnification factor x̄1=xst

�� �� of the main system m1 (see Fig. 1) attached by the modified absorber with optimum

parameters (f ¼ 0:9524, x ¼ 0:1336) and that attached by the classical absorber with optimum ones (f̄ ¼ 0:9524, x̄ ¼ 0:1336) based on zero

spring mass ratio (i.e., b ¼ 0.0) and constant lumped mass ratio m̄ ¼ m ¼ 0:05.
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(58)–(60), respectively, based on the given data: b ¼ 0:0 and m ¼ m̄ ¼ 0:05. They are exactly the same, because
the only difference between the modified absorber and the classical absorber is that the former considers its
spring mass and this is not true for the latter, and the mass ratio for the current modified absorber is assumed
to be zero, i.e., b ¼ 0.

7.2. Influence of mass ratio b

The curves of dynamic magnification factor x̄1=xst

�� �� versus frequency ratio O for the main system m1 (see
Fig. 1) are dependent on the spring mass ratio of the modified absorber, b ¼ ms=m2. The influence of spring
mass ratio is investigated here, with b ¼ 0:025, 0.05, 0.075 and 0.1, respectively. The data required for plotting
the last curves are shown in Table 1. In which, the optimum parameters for the modified absorber, xopt and
fopt, are determined from Eqs. (51) and (36), while those for the classical absorber, x̄opt and f̄ opt, are from Eqs.
(60) and (59). It is noted that the lumped mass ratios m̄ of the classical absorber listed in the third column of
Table 1 are determined from the formula m̄ ¼ 3m=ð3þ b� mbÞ given by Eq. (61) using the corresponding data
for the modified absorber with its values of b and m listed in first and second columns of Table 1.

Figs. 7(a)–(d) show the curves of dynamic magnification factor x̄1=xst

�� �� versus frequency ratio O for the
main system m1 for the cases of spring mass ratios b ¼ 0:025, 0.05, 0.075 and 0.1, respectively. In which, the
solid curves with circles (—J—) are for the modified absorber and those with crosses (—�—) are for the
classical absorber. From the figure, one sees that the differences between the last two curves increase with
increasing the mass ratio b. Besides, the maximum dynamic magnification factor of the optimum modified
absorber is always smaller than that of the optimum classical absorber. In general, the helical spring of the
absorber is not massless. Therefore, the presented optimum modified absorber should be more reasonable
than the optimum classical one.

7.3. Vibration suppression of a beam with an absorber and subjected to a moving load

To show the applicability of the presented theory, the optimum parameters of an absorber for suppressing
the forced vibration responses of a pinned–pinned beam subjected to a concentrated force Pc ¼ 9.8 N moving
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Table 1

Influence of spring mass ratio (b ¼ ms=m2) of the absorber on the optimum parameters of the modified absorber (with b ¼ ms=m2) and

classical absorber (with b ¼ 0) based on constant lumped mass ratio m ¼ m�2=m�1 ¼ 0:05 (see Fig. 1)

Spring mass ratios of

absorber b ¼ ms=m2

Lumped mass ratios Optimum parameters

Modified absorber

m ¼ m�2=m�1

Classical absorber

m̄ ¼ m2=m1

Modified absorber

(b ¼ ms=m2)

Classical absorber (b ¼ 0)

xopt fopt x̄opt f̄ opt

0.025 0.05 0.0496 0.1342 0.9520 0.1331 0.9527

0.05 0.0492 0.1347 0.9516 0.1326 0.9531

0.075 0.0488 0.1352 0.9513 0.1321 0.9534

0.1 0.0485 0.1357 0.9509 0.1317 0.9538

Note: m̄ ¼ 3m=ð3þ b� mbÞ.
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Fig. 7. Influence of spring mass ratio (b ¼ ms=m2) of the absorber on the dynamic magnification factor x̄1=xst

�� �� of the main system m1 (see

Fig. 1), respectively, attached by a modified absorber (with constant lumped mass ratio m ¼ m�2
�

m�1 ¼ 0:05) and a classical absorber:

(a) b ¼ 0:025, (b) b ¼ 0:05, (c) b ¼ 0:075, (d) b ¼ 0:1.
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from the left-end to the right-end of the beam (see Figs. 3 and 5) are investigated. The beam, composed of
13 nodes and 12 identical beam elements, is made of steel with mass density r ¼ 7820 kg=m3, Young’s
modulus E ¼ 206:8GN=m2, total length L ¼ 4m and cross sectional area A ¼ 0.03m� 0.03m.
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For a pinned–pinned beam subjected to a moving load, the contribution to the dynamic responses of the
beam from its first mode is the most significant. Therefore, this section will design an optimum absorber
according to the modal data of the first vibration mode of the beam. To this end, an absorber will be
installed to the central point of the beam (i.e., the crest of the first mode shape of the beam), as shown in Fig.
5. According to Eqs. (66a) and (66b), the generalized mass ~m1 and generalized stiffness ~k1 associated with the
1st vibration mode of the beam are, respectively, given by ~m1 ¼ 14:0764 kg and ~k1 ¼ 10621:3N=m.
Theoretically, the larger the mass of the absorber, the better the vibration–reduction efficiency of the absorber.
However, the static deflection of the beam also increases with increasing the lumped mass of the absorber.
Therefore, the lumped mass of the absorber cannot be too large. In this subsection, the lumped mass of the
absorber is taken to be 5% of total mass of the pinned–pinned beam, i.e., m2 ¼ 7820� 0:03�
0:03� 4� 0:05 ¼ 1:4076 kg.

Based on the above-mentioned generalized mass ~m1 ¼ 14:0764 kg and generalized stiffness ~k1 ¼

10621:3N=m together with the constant lumped mass of the absorber m2 ¼ 1:4076 kg and Eqs. (14), (29),
(36), (51) and (58)–(61), one obtains the spring mass ratios m (and m̄), optimum frequency ratios fopt (f̄ opt),
optimum damping ratios xopt (and x̄opt) of the modified (and classical) absorbers for the cases of b ¼ 0, 0.1, 0.2
0.3 and 0.4, respectively, as shown in Table 2. Next, based on the last information, the corresponding optimum
spring constants k2 and optimum damping coefficients c2 of the modified and classical absorbers are also
calculated according to Eqs. (68) and (69) and shown in Table 3.
Table 2

Optimum non-dimensional parameters for the modified absorber (with b ¼ ms=m2) and classical absorber (with b ¼ 0) with constant

lumped mass of absorber, m2 ¼ 1:4076kg, for suppressing the vibration responses of a beam subjected to a moving load, for the cases of

b ¼ ms=m2 ¼ 0:0, 0.1, 0.2, 0.3 and 0.4 (see Fig. 5)

Spring mass ratios of

absorber b ¼ ms=m2

Lumped mass ratios Optimum non-dimensional parameters

Modified absorber

m ¼ m�2=m�1

Classical absorber

m̄ ¼ m2=m1

Modified absorber

(b ¼ ms=m2)

Classical absorber (b ¼ 0)

xopt fopt x̄opt f̄ opt

0.0 0.1 0.1 0.184637 0.909090 0.184637 0.90909

0.1 0.102987 0.189853 0.903894

0.2 0.105957 0.194885 0.898766

0.3 0.108908 0.199744 0.893707

0.4 0.111839 0.204437 0.888720

Table 3

The corresponding optimum dimensional parameters for the modified absorber (with b ¼ ms=m2) and classical absorber (with b ¼ 0) with

constant lumped mass of absorber, m2 ¼ 1:4076kg, and with their optimum non-dimensional parameters shown in Table 2 (see Fig. 5)

Spring mass

ratios of absorber

b ¼ ms=m2

Spring mass of

absorber ms (kg)

Lumped masses Optimum dimensional parameters

Modified

absorber m2 (kg)

Classical

absorber m2 (kg)

Modified absorber (b ¼ ms=m2) Classical absorber (b ¼ 0)

c2 (N s/m) k2 (N/m) c2 (N s/m) k2 (N/m)

0.0 0.0

1.4076

12.980 877.767 12.980 877.767

0.1 0.14076 13.690 893.708

0.2 0.28152 14.400 909.080

0.3 0.42228 15.120 923.905

0.4 0.56304 15.818 938.212
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Fig. 8. Influence of spring mass ratio (b ¼ ms=m2) of the absorber and moving-load speed V on the maximum dynamic responses of the

pinned–pinned beam, respectively, attached by a central modified absorber and a classical absorber with constant lumped mass of

absorber m2 ¼ 1:4076kg and subjected to a moving load with magnitude Pc ¼ 9.8N (see Fig. 5): (a) b ¼ 0, (b) b ¼ 0:1, (c) b ¼ 0:2,
(d) b ¼ 0:3, (e) b ¼ 0:4.
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By means of the data given by Tables 2 and 3, one obtains the maximum vertical ðȳÞ displacements of the
central point of the pinned–pinned beam subjected to a moving load, with magnitude Pc ¼ 9.8N and constant
speed V ¼ 0270m=s, as shown in Figs. 8(a)–(e) for the cases of b ¼ 0, 0.1, 0.2, 0.3 and 0.4, respectively. From
these figures, one finds that the larger the spring mass ratio b, the smaller the maximum vertical central
displacements of the pinned–pinned beam.

From the foregoing discussions, one sees that the mass of the helical spring of the absorber does affect the
vibration–reduction efficiency of the absorber to some degree. Therefore, it is significant to take the spring
mass of the absorber into the formulations.
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8. Conclusions

Because of complexity of the mathematical expressions, the mass of the helical spring (or spring mass) is
usually neglected in the dynamic analysis of the classical absorber. In order to realize the influence of the spring
mass, this paper has compared the characteristics of the last classical absorber with those of the modified

absorber by taking the inertia effect of its spring mass into consideration. The examples studied include the
dynamic responses of a single dof spring–mass main system, respectively, attached by a modified absorber and
a classical absorber and subjected to a harmonic excitation, and the dynamic responses of a multiple dof
pinned–pinned beam, respectively, carrying a modified absorber and a classical absorber and subjected to a
moving concentrated load. The absorbers adopted are the types of spring–damper–mass systems. The curves
for the dynamic responses of the main system (the single dof spring–mass system or the multiple dof
pinned–pinned beam) reveal that the vibration–reduction efficiency of the absorber is dependent on the inertia
effect of its spring mass to some degree. In view of the fact that the helical spring of the absorber is not
massless, the presented modified absorber (with spring mass considered) should be more practical than the
classical absorber (with spring mass neglected).

From the element mass matrix of the modified absorber given by Eq. (7e), one sees that the spring mass
of the modified absorber affects both the effective mass of the main system and that of the modified ab-
sorber, besides, it has also the effect of coupling the above two systems. However, this is not true for the
lumped mass of the classical absorber. The above-mentioned different effect is due to the fact that the spring
mass of the modified absorber is the distributed mass, but the lumped mass of the classical absorber is the
concentrated mass.
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